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[Plate 2]

The fracture of a brittle solid under & spherical indenter is the best studied case of fracture
in a strongly inhomogeneous, well defined, stress field. Two principal topics are discussed,
the path of a crack in a field of non-uniformly directed stress, and the stability of cracks of
various length when the prior stress on the crack path is non-uniform. For the first, it is
shown that the crack growth should, ¢o a first approximation, be orthogonal to the most tensile
principal stress, and thus correspond, in a torsion-free stress field, to a surface delincated
by the trajectories of the other two principal stresses: while, to a second approximation, the
crack should deviate from this path by having a larger radius of curvature at every bend,
thus exhibiting a pseudo-inertia even in slow growth. This is in accordance with the known
experimental facts about the Hertzian crack, particularly the fact that the crack at the
surface forms systematically outside the edge of the circle of contact, at which the maximum
tensile stress occurs. On the second question, it is found that there are four crack lengths,
Co» €y Cp, Cg, corresponding to stationary values of energy. ¢, and c, represent unstable equi-
libria, and diminish with increasing load; ¢, and c; represent stable equilibria and increase
with increasing load. With small indenters, ¢, soon becomes less than the size of pre-present
surface flaws, and an unobserved shallow ring crack of depth ¢, is produced: the critical con-
dition for observed fracture is then the merging of ¢, with ¢,, allowing unstable growth to
the cone crack of depth c,. This explains Auerbach’s law, that the critical load for production
of a cone crack is proportional to the radius, r, of the indenter sphere. With larger indenters,
of several centimetres radius for a typical case, ¢, and ¢, merge and disappear before c, oxceeds
the size of pre-present flaws. The critical load for cone fracture then becomes nearly propor-
tional to r2, as observed. The previous calculations of Roesler (19564, b) relate to the second
stable crack dimension, c;, though his energy scaling principle is also applicable to the
critical condition at which ¢, and ¢, merge. The Hertzian fracture test, within the validity
range of Auerbach’s law, affords a means of measuring surface energy at the fracture surface
independent of knowledge about the pre-present flaws.

1. INTRODUCTION

If a hard spherical indenter is pressed with an increasing normal force P on to the
flat face of a brittle solid, a cone crack develops when P reaches a critical value P,. If
this experiment is repeated with a number of spheres of various radii r, the materials
being the same, it is empirically found that P, is proportional to r. Following the
suggestion of Roesler (1956a) we refer to this fact, first found by Auerbach (1891),
as ‘Auerbach’s law’. In conjunction with Hertz’s (1881) calculation of the elastic
stresses under this type of loading, it implies that the maximum tensile stress in the
body, just prior to fracture, is proportional to »—% instead of a constant value, as one
might have supposed. One suggested explanation of this size effect is based on
Griffith’s (1920) demonstration that in most brittle substances fracture begins from
pre-existing flaws, with the consideration that a larger stressed area has a greater
chance of including a particularly weak flaw. Roesler, however, refutes this explana-
tion on the grounds that the scatter in results is just about the same with large and
small indenters.
[ 291 ]
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Hertz noted that the duration of an impact, for example, with a bouncing
sphere, is sufficient to make the quasistatically evaluated stress a good approxima-
tion within the region in which it is at all large. This enables Roesler (1956a) to
demonstrate the equivalence of a number of different empirical formulations of the
critical conditions of Hertzian loading, either slowly applied, or by impact, for pro-
duction of a cone crack. All can be brought into the form that just before fracture
the elastically stored energy is proportional to the area of the circle of contact. Cone
cracks are geometrically similar, scaling with the circle of contact, and Roesler sug-
gests that the fundamental form of the law is proportionality between elastically
stored energy and crack surface area.t The law would be explained, he suggests, if
we suppose that the crack grows nearly reversibly, the small fraction of the elastic-
ally stored energy released by crack growth just about balancing the increase of
surface energy throughout the process, finally amounting to a size-independent
fraction 5 of the prior total stored energy. We shall propose another interpretation,
which does not imply near reversibility in the main growth of the crack.

2. THE STRESS FIELD

We base our interpretation on the special nature of the inhomogeneous stress
field of Hertzian loading (Hertz 1881, 1882). The radius a of the circle of contact
between spherical indenter and flat specimen, and the maximum tensile stress o, in
the specimen, are found from the Hertzian analysis:

a® = $kPr|E, (21)
o, = (1—2v)P/2ma® = }(1—2v)p,, (2:2)
k= f[(1-v))+(1-v?)E[E], (2+3)

where P is the normal load on the indenter, r is the indenter radius, £ and E’ are
the Young modulus of specimen and indenter respectively, and v and v’ the cor-
responding values of the Poisson ratio. p, is the mean pressure acting between
indenter and specimen and serves as a unit of stress. The factor k conveniently
becomes unity, for v = 1, if indenter and specimen are made of the same material.
Figure 1, drawn for v = } (we assume this value for all numerical examples presented
in this paper) shows the value of the greatest tensile stress o (see below) as a function
of position in a plane through the axis of symmetry. There is a drop-shaped region
below the area of contact in which all three principal stresses are compressive.
Outside this region, and remote from the free surface, SS, the greatest tensile stress
rises to a modest value of about 0-005p,, and falls off again with distance. Much
larger tensile stresses, in excess of 0-01p,, occur in a shallow region near the free
surface outside the area of contact, and reach their maximum oy, af the circle of
contact (AA in figure 1).

1 From this it follows that the Auerbach constant, P,/r, for a static test, is replaceable for
dynamic tests, when W, is the kinetic energy of the impacter, according to

Plr = (2) (9E2W?/100h%4)b
which is equation (12) of Roesler (1956a) rewritten in the notation defined in §2 below.
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The directions of principal stresses are best displayed by the stress trajectories
(cf. Morton & Close 1922).T We choose to label the three families of stress trajectories
insuch a way that in general o, > o, > o,. These respectively replace the p,, p,, p, of
Morton & Close. o, is a ‘hoop-stress’, its trajectories being circles about the sym-
metry axis. o and o, trajectories form a pair of orthogonal families in any plane
through the symmetry axis. A o trajectory is approximately a hyperbola meeting
the surface orthogonally (the stress o7 there falling to zero if the point lies outside the
circle of contact) and having an asymptote radial from a point somewhat above the

0-01 0-05

compressive
zone

0-005 0-005 0-005

Ficure 1. Contours of greatest principal stress, 0, in semi-infinite elastic medium (surface
S8) in contact (diameter of contact AA) with spherical indenter. p, is taken as the unit
of stress. Broken lines are o stress trajectories drawn from surface at distances 0-8a, a,
1-2a from centre of circle of contact.

centre of the circle of contact. Three examples, starting from 0-8a, @, and 1-2a at the
surface, are shown in figure 1. o, trajectories approximate at depth to circles about
this centre, and have inflexions where they enter the region of relatively high stress
near the free surface, where they turn rather rapidly towards parallelism with this
surface. o, is always the most tensile of the three principal stresses, and the greatest
tensile stress values shown in figure 1 are therefore o, values throughout. o, which
is tensile except near or within the compressive zone, is the intermediate stress
except in a small region near the surface, just within the circle of contact (between
0-97a and a), in which o3 > 0,. 03 is everywhere compressive.

t Hertz calculated the stress trajectories approximately within a limited region, and his
extrapolation outside this region was erroneous. They were re-computed by Fuchs (1913).
Fuchs’s diagram purports to show the stress trajectories in a sphere, rather than a plane-
surfaced body, and is, in consequence, in error: as he himself remarks, within the validity of
the approximations used, if the scale is chosen so that the circle of contact appears with finite
radius, the radius of the sphere should appear infinite. As a result, his stress trajectories of the
family which we denote as o, actually meet the free surface at a finite angle, instead of
extending asymptotically to this surface, and his o, trajectories (our notation) do not meet
the free surface quite orthogonally. These errors have become progressively exaggerated in
the copying of Fuchs’s diagram into Love (1927) and Haward (1949). Morton & Close show
the correct general form of a o, trajectory (p,, in their notation) but one at least of their oy
trajectories (p,) must have been rather carelessly sketched, not crossing the o, trajectory
orthogonally.
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3. THE CRACK PATH

The o, stress trajectory leading from o in figure 1 bears a remarkably close
resemblance to a section of the fully developed cone crack. The chief empirical dis-
crepancy is that the crack generally meets the free surface a little outside the
periphery of the circle of contact, rather than at it. On the other hand, the angle «
which this o trajectory asymptotically makes with the symmetry axis, ~ 68°,isin
remarkably close agreement with that observed experimentally (68-5 + 1° according
to Roesler 1956b). Thus to an excellent first approximation we may say that
cracking proceeds orthogonally to the greatest tensile stress o, thus following a
surface delineated by the trajectories of the other two principal stresses, o, and .
Starting at the free surface from a point of maximum o, (for example, at o, = om),
the o, trajectory carries the crack round in a circle about the axis, and the o,
trajectory carries it downwards, initially vertically and subsequently into an ever-
widening cone. (This is the principal or primary crack: there are secondary cracks
which we need not discuss till later.)

One may express surprise that the crack path, apart from its place of commence-
ment, is in any simple way related to the state of stress in the body prior to cracking:
for the further growth of a crack beyond any particular stage in its growth is
assuredly determined by the extremely different stresses present at that stage.
A little consideration, however, will show that a close relation between stress
trajectory and ultimate crack path, as outlined above, must exist, although the
correspondence will not be exact.

We note that AU, the reduction in mechanical energy (the sum of elastically
stored energy and energy of the loading system) due to formation of the crack, is
calculable as the work required to be done by tractions applied to the crack faces to
bring them together again. Starting with the crack in elastic equilibrium at any
stage in its growth, a workless constraint to prevent further growth being applied
at the crack front, one applies tractions to its faces which increase linearly and
proportionally until they reach values equal to the stresses along the crack path as
they were prior to fracture. The strains are therefore also precisely as they were
before fracture, and the crack is closed, with corresponding points on its two faces
precisely juxtaposed again. The energy decrease caused by crack formation is
therefore expressible in terms of an integral of prior stress multiplied by subsequent
relative displacements of corresponding points, over the crack surface. These
displacements are, in principle, calculable from the tractions on the crack surface
and the elastic properties of the system. Thus, for a given system, AU at any stage
of crack growth depends on the crack path up to that stage and the prior stresses
on that path.

The location and orientation of the next increment of crack growth must, for
growth under reversible conditions where the release of mechanical energy only just
suffices for further propagation of the crack, be that which maximizes the quantity
d(AU)/|dc| — 2y, where dc is an incremental area of crack and vy is the cost in free
energy of making unit area of new surface. (Anisotropy in y plays a significant role
in determining the path of crystal cleavage, but we are now considering such
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materials as glass, for which we shall regard y as independent of position and
orientation.) It is likely that the above condition holds so long as the speed of crack
propagation is not a large fraction of the speed of transverse sound waves.

The quantity d(AU)/|dc| may be calculated in two ways: from the prior stresses,
as the difference between the amounts of work required to close the whole crack
with and without the increment dc: or from the actual stresses at the location of dc,
as the amount of work required to close the incremental crack alone. The calculation
of this term is indeed the basis of Irwin’s ‘fracture mechanics’ approach (Irwin
1958) to the problem of crack extension, about which more will be said in §4.
Griffith (1924), dealing with the problem of an obliquely stressed crack in plane
strain or plane stress, postulates that the crack extends from that place adjacent to
the crack tip (regarded as having an elliptical cross-section) where the actual (as
distinct from prior) tensile stress is greatest. The Griffith treatment carries the impli-
cation, from the way he relates this problem to his former one (1920) of a perpendi-
cularly loaded crack, that the crack extends orthogonally to this maximum tensile
stress. Using the fact that the energy reduction due to a crack, of given size and of
arbitrary orientation in a stressed body, is greatest when the crack plane is per-
pendicular to the greatest principal tensile stress and is insensitive to the values of
the other two principal stresses, one concludes that the location and orientation of
the crack increment as postulated by Griffith is indeed that which maximizes
d(AU)/|dc| — 2y. It is to be noted that the path maximizing this quantity at each
increment is not necessarily the path of maximum overall energy release; nor is it
necessarily the path of maximum prior stress, nor of maximum normal component
of tensile stress: cf. figure 1, which shows that the actual crack path, which closely
approximates the o; trajectory beginning from the circle of contact AA, is very far
from satisfying either of the latter conditions.

From the foregoing argument we conclude that while the crack path can be
regarded as controlled by the prior stresses, it is influenced by these stresses over
the whole of the previous path and not only by the prior stresses at its growing edge.
We must therefore deny the hypothesis that it follows stress trajectories exactly.
Quite clearly, if a crack growing perpendicularly to a strong uniaxial tension passes
into a region of zero stress, it will continue for some distance on the same plane, and
the result will be little different if the second region is weakly stressed in any direc-
tion, so that arbitrarily large deviations between the crack and the surface defined
by the lesser principal stresses are possible. In a more regularly varying stress field,
so long as the trajectories of the two lesser principal stresses define a plane, a crack
on that plane will continue on it. When the surface they define bends the crack will
tend to continue on its former plane, as if it possessed inertia, though we do not
invoke a dynamic cause. It thus enters a region in which it is obliquely stressed, and
thereby suffers deflexion, in the direction readily inferred from Griffith’s case,
namely towards perpendicularity to the new orientation of greatest principal tensile
stress. ¥

1 There are some complex possibilities in the general case. One is that in a stress field with
torsion there is no unique surface defined by following the trajectories of the two lesser
principal stresses from one point, so that the form of the crack on its growth surface must be

Footnote conlinued on next page
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Thus we may say, at least qualitatively, that the crack follows the surface defined
by the o, and o, stress trajectories in much the same way as a massive suspended
particle follows the flowlines of an airstream, swinging wide on the bends: the crack
will curve in the same direction as the stress trajectory surface, but with an exag-
gerated radius of curvature.

We may now re-examine the empirical evidence with regard to Hertzian cracks
to see whether these anticipations are confirmed. Observers agree that the diameter
of the Hertzian cracks at the specimen surface exceeds that of the circle of contact
(by an average of 199, according to Auerbach (1891) or 129, according to Tillet
(1956)). Roesler, after rejecting the explanation of Auerbach’s law by a statistical
distribution of flaws, accepts this explanation for the excessive diameter of the
surface crack. It would alternatively be explained if the crack began at a place at
or close to the edge of the circle of contact, where the stress is greatest, and then
spread around, not exactly on the ¢, circle, but with a somewhat greater radius of
curvature. We give reasons below for supposing that the crack first runs around to
form a shallow ring and only subsequently extends in depth. This explains the
excessive diameter of the ring crack at the surface. The pseudo-inertia of crack
growth has a compensatory effect when the crack deepens: for, if it strictly followed
the o trajectories from the actual surface ring we should expect it to finish with
a larger semiangle than the 68° which corresponds to o trajectories from the circle
of contact. Because of the pseudo-inertia, it should dive deeper, so that the two
deviations tend to compensate each other in their effect on the cone angle. Ac-
cording to these views, the surface ring crack should be somewhat eccentric relative
to the circle of contact, and the cone axis should not truly coincide with the surface
normal.

4. CRITICAL CONDITIONS FOR CONE FRACTURE

Figure 2 shows the distribution of stress o; normal to the downward crack path
as a function of the distance ¢ along it, assuming that the path follows precisely along
the o, trajectory commencing at the circle of contact. As indicated in §3 this
assumed path is inexact. In particular, the initial stress (at ¢ = 0) would be only
about 0-8 oy, starting at a point 1-12a from the axis. However, as we have pointed
out, we believe that in general the ring crack initiates close to the circle of contact.
This most highly stressed portion of the ensuing eccentric ring crack should act as
the leader, determining the conditions for the ultimate penetration of the whole
crack. In any case the main qualitative features of the stress distribution along the

known before the surface on which its further extension should occur can be predicted.
Another is that gross instability of the crack path would set in after a change in dominance of
the principal stresses, one of the hitherto lesser principal stresses becoming the greatest. Such
a state of stress is produced, for example, when a cylindrical sleeve is shrunk tight on to
a mandrel held in longitudinal tension. A similar state of stress is apparently produced
spontaneously by over-rapid cure of a fairly thick cylinder of polyester resin. The transition
from simplicity to ordered complexity which occurs in such specimens where a crack from the
surface enters the core region deserves aesthetic no less than scientific contemplation, and
receives both from Professor L. O. Nicolaysen of the Bernard Price Institute for Geophysical
Research, Johannesburg, by whom they were shown to one of us. Fortunately neither com-
plication is present in the Hertzian stress field.
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path assumed in figure 2 are similar for all alternative paths within the range of
uncertainty. These are that the stress rapidly falls approximately linearly within a
small distance & < a, after which it gradually diminishes, approximately as
(c+ 3a)~1. This gradual fall-off is so slight between ¢ = ¢ and ¢ ~ 0-3a that the stress
may be regarded as constant over this range. From figure 2 we may write the total
stress as

0_1 — a_l+0_ll’
where o' =0060m
(4-1)
and 0" = (om—0')[1—(c/d)] (c <),
" =0 (C > 8)9
and ¢ is related proportionally to @ according to
8 = 0-02a. (4-2)

om is defined in (2-2). The parameters a and d are convenient scaling lengths for the
stress field: we should note that they are not constant, but increase with load
according to (2-1).

0-2F
O'm‘
0-1
it
|
o'l-4
_: "~ 1 L ]
0 o/a 01 02 c/a 03

FI1GURE 2. 0, as function of relative length c/a along o, trajectory drawn from circle of
contact. For definition of o, ¢’ and § see text.

To describe the progress of a crack along a path on which the prior stresses vary
in such a manner as outlined above we note the distinctive behaviour of cracks under
two extreme types of simple loading, namely () uniform tensile stress and (b) loading
at the mouth only (as by the driving in of a wedge). Case (a) is the one treated by
Griffith, and gives rise to an unstable critical crack length such that a shorter crack
will not grow while a longer one will grow without limit. This critical crack length
corresponds to a maximum in the sum of i . Case (b)
results in a stable crack length corresponding to a minimum in the sum of these
energies. In the light of this it is possible to foresee that the inhomogeneous stress
distribution of the present case may give rise to four values of ¢ at which the energy
is stationary. First, a crack short compared with d is in a condition similar to case (a)
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and has a critical value ¢,. As the load increases ¢, diminishes. If it becomes less than
the size, ¢y, of surface flaws already present, these should extend in depth, but not
without limit because of the steep decrease in stress. The situation is now that of
case (b), with a stable crack length ¢, of order of magnitude §. At this stage we expect
the crack to run around, deviating somewhat outside the o, trajectory, to form a
shallow ring-crack (not yet a cone crack). By hypothetical increase of ¢, which would
not in these circumstances occur spontaneously, it would reach further into the
region of lower, nearly constant, stress and increasingly resemble case (a) again,
thus having a second unstable critical length c,. If it could be made to exceed c,
a further growth (at constant load) to a substantially greater depth should occur.
The situation now, with the stress diminishing approximately as ¢!, and the crack
extending on a widening front on the conical surface, is unlike either case (a) or (b)
above, but we rely on Roesler’s analysis (1956b) to confirm that it leads to a second
stable length, c,, substantially larger than a.

- 2c —

|
|
|

Ficure 3. Crack, length 2¢, in infinite medium, loaded with forces + F at +b.

With a little further consideration we note that increasing the load on the indenter
increases the stable crack lengths ¢, and ¢, and decreases the unstable crack lengths
¢o and c¢,. Thus ¢; and ¢, mutually approach each other, until the corresponding
maximum and minimum in the curve of total energy against ¢ merge and vanish.
At this stage the stable length ¢, becomes unstable and the crack spontaneously
grows to the much greater new stable value c;, forming the fully developed cone crack.
Since, in this interpretation, the critical event for a fully developed fracture is the
merging of ¢, and ¢,, we will now pursue its significance in some quantitative detail.

The most severe approximation we need to make is to ignore both the curvature
of the crack path and its widening into a cone, treating it as a plane crack normal to
the surface. For ¢, ¢, and ¢, this approximation will be seen to be not too severe. To
compute the condition that the crack will, at any stage, extend, we make recourse
to some results developed by Irwin (1958).

The quantity d(AU/|dc| of §3 above is represented in Irwin’s notation by ¥,
designated the strain energy release rate. The principal standard cases for which



On the theory of Hertzian fracture 299

explicit calculations of ¥ are available are cases in which the crack advances uni-
formly along its front, on a prescribed (in most cases, planar) path, so that the
general infinitesimal increment of area, dc, can be replaced by the increment, dc, in
a scalar quantity c representing the crack length, or half-length (for a double ended
crack), or radius (for a crack of axial symmetry). ¢ is then defined as dAU/dc
per unit length of crack front: it is a function of the crack size, the applied load, and
the size, shape, and elastic properties of the specimen. Irwin also defines a stress
intensity factor, ", of the dimensions stress x (length)?, related to ¢ (in the case

f pl train) b
of plane strain) by G = (n/B) (1— A (3)

the virtue of which is that 2 values for a number of superposed loads are additive.
To calculate ¢ for the loading conditions specified by (4-1) we begin with a crack
of length 2¢ (figure 3), infinitely long in the direction normal to the plane of the
figure (so that a state of plane strain exists), embedded in an infinite, isotropic,
elastic medium. The crack is subjected to localized forces +F per unit length,
acting normally to the crack plane, at positions + b. From Irwin (1958) we write the

factor % for this loading
2F [ ¢ \}
=" (r:z) - (4:4)

For any distribution of normal stress along the crack faces we may insert
F = o(b) db into (4-4) and integrate. We now make use of the approximation intro-
duced by Inglis (1913) that the rate of release of mechanical energy, as the crack
extends, for a crack of length 2¢ in an infinite medium, is twice that for a surface
crack of length ¢ in a semi-infinite medium. The resulting value of ¢ derived from
(4-3) will therefore apply equally well to the latter case, which we are considering
here. If we perform the integration of (4-4), inserting the values of stress given by
(4-1), we obtain for £ and ™" (corresponding to ¢’ and ¢ respectively):

H' = co'ch, i
} o

A" = 7—21 (om—0”)ck [sin—l g —3-ya- ,32/62)},]

where f =cifc < dand f=difc > 0.

We are now in a position to evaluate the conditions for crack growth. We consider
the following cases: (i) ¢ < d, leading to an estimate of ¢,; (ii) & < ¢ < a, leading to
¢, and ¢,; (iii) @ < ¢, beyond which (4.1), and therefore (4-5), is no longer valid, and
weresort to Roesler’s estimate for c;. The condition that the crack extends, according
to the basic assumption of Griffith, is

G = 2y. (4-6)

(i) EBvaluation of c,. Putting ¢ < ¢ and integrating ¢ and 24" over the length
of the crack we reduce the sum %" = A"+ A" to

|

e Om
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From (4-3) and (4-6) we have, ignoring terms in ¢2/42,
s m vES _
T o Jom) T () (1= Jom) ~

=§£%’D{li[l—%%)i)]é}.

from which ¢

The solution corresponding to the positive sign alternative is excluded by the
restriction ¢ < 8. Taking the negative sign and expanding yields

_ 4 o'\ cq .
CO—CG{1+; (1—};) §+.“}’ (47)
where Ca 2By

= mot (1—1?)

is the critical crack length according to Griffith for a uniform tensile stress om. The
correction terms become of importance when c,/d approaches unity, which occurs,
for example, at light loads.

(ii) Evaluation of ¢, and c,. Putting ¢ > ¢ and integrating ¢ and ™ over the
length of the crack,

Again, from (4-3) and (4-6), we arrive at a quadratic expression for ¢,

1[ 2yE 1
2_ |/~ r_ el ' 1)252 —
—~ [(l—v2)o"2 2(om/o 1)6]0—&-7’2 (Om/o’—1)20% = 0.
Writing the coefficients of this quadratic as 4, (= unity), 4,, and 4, the solutions
for ¢ become 1 = — BA1 £ (1 44,/ ADH] (48)

It may be shown that the positive sign corresponds to an unstable crack length (c,)
and the negative sign to a stable length (c,). The two roots of (4-8) merge (to become
imaginary) when the square root term vanishes, that is, when A3 = 44,. This condi-
tion reduces to
_ vE

T 21— (om/o’ —1)"
Hence, from (2-1), (2-2), (4-1) and (4-2), writing P* for the critical load at which
¢, = ¢, = ¢* (we shall use the asterisk to denote the value of any variable when

01 = 02 = 0*): P* Sﬂzao'm k’y }

o'20 (4-9)

v 300’ (1— 0 [om) (1—v?) (1—2v)?
~ 2:35 x 105ky,

(4.10)

in which the numerical factor is, of course, somewhat unreliable because of approxi-
mations in the treatment. It follows immediately from (4:8) and (4-9) that
Om o*
*=_—24,=|——-1) — ~ 5:050%* 4-11
ot =4, = (Z-1) T = 50w (#11)

which lies within the range & < ¢ < 504, as required.
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We may test (4-10) by using it to calculate y for the Pilkington plate glass studied
by Tillett (1956) for which she found Pe/r ~ 6-1 x 107 dyn/cm. Identifying P, as P¥,
with k = § (steel indenter and glass specimen), (4-10) gives y = 4-0 x 10%erg/cm?,
(Griffith found y ~ 650 erg/cm? and Roesler (1956b) 4000 erg/cm?.)

According to our interpretation the shallow ring crack to depth ¢, passes un-
recognized as fracture. This is, perhaps, not surprising since, with a steel indenter of
r =1 cm on a glass specimen, ¢, is calculated to be about 50 um just prior to the
merging of ¢, and ¢,, and most experiments are performed with much smaller
indenters. It is the merging of ¢, and c,, allowing the crack to make the much greater
extension to ¢z, which we take to be the critical event producing the visible cone
crack. This is consonant with Roesler’s (1956a) proposed derivation of Auerbach’s
law by a size-energy scaling argument, but instead of applying it to the fully
developed crack we would apply it to the crack at the critical merging of ¢, and c,.
The value of ¢* at which this occurs is indeed proportional to @ (equations (4-11) and
(4-2)) and the approach to this critical condition is indeed reversible, whereas the
evident weakness of Roesler’s treatment was the seemingly necessary assumption
of reversibility in the formation of the fully developed cone crack.

(iii) Evaluation of c;. Equation (4-1) no longer satisfactorily describes the stress
field about the crack path when ¢ > a. Roesler finds, for loads greater than P, that
the ratio ¢,/ P% tends to constancy. He evaluates this constant, which, when o = 68-5°
(see §3), is given in our notation by

cg = 1:6 x 108 P%, (4-12)

when c; is expressed in centimetres and P in dynes.

5. LIMITS OF VALIDITY OF FRACTURE CRITERIA

By establishing P* as a unit of load, and §* as a unit of crack length where, from
(2-1), (4-2), (4-10),
8* = 1-17(k2y/E)}+% (5:1)

for v = }, and by writing 8 = 8*(P/P*)}, we may conveniently reduce equations
(4:7), (4:8) and (4-12) for crack length to the following expressions in P:

*\ % *
%%:4-81x10—2 (IiP) [1+8-64x 10—2%+...] @)
w=vu(zm) a2 (7) (7)) © )
P\%
%:_k = 460 x 102 (._P_*) (G)

The crack lengths ¢ in (5-2) are shown plotted in figure 4 as a function of P. In all
cases the plot becomes inaccurate at P < P* and the curve is smoothed in this
region. Also included in figure 4 is the variation of § and a with P.

The qualitative description of crack formation given in § 4 may now be discussed
in detail. In particular we note the dependence of behaviour of the crack on ct, the
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length of microscopic flaws present in the specimen. Let us consider the various
regions of the curve in figure 4 within which ¢; may fall.
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F1GURE 4. Plot of crack length ¢ as a function of load P. §* and P* are taken as units of length
and load respectively. The broken lines at low P represent equations (5-2); the curve is
smoothed in this region. Also shown is the variation of ¢ and § with P.

(i) ¢; < ¢f. The load P* is in this case insufficient to make the crack unstable.
A higher load B, > P* is required to reduce ¢, to length ¢;, whereupon the crack
grows directly to c,, the length of the fully developed cone crack, in one stage. This
behaviour will occur for indenters of radius larger than a limiting value r, deter-
mined by the condition ¢f = ¢;. From (5-2a) and (5-1) this limiting condition
becomes

cr = ¢ = 0-0528* = 0-061(k2y/E)rs, (5:3)

that is, ra = 66(B/k2y)cd. (5+4)

7y is thus an upper limit to the indenter radius for which Auerbach’s law should be
obeyed. Putting k=%, £ = 7x10'dyn/cm?, y = 4-0x 102erg/cm?2, (5-4) gives
g = 40 % 10‘50;3 , with 7, and ¢; in centimetres. Tillett found that Auerbach’s law
failed for indenters of larger radius than 3-5 cm. This would correspond to ¢; = 0-9
x 10~% cm, which is of the right order of magnitude for Griffith flaws. According to
the Griffith fracture criterion the tensile strength of the glass should then be
1-4 x 10° dyne cm—2. This is about seven times the momentary load strength ‘at 19,
risk’ for the glass Tillett used, quoted as 2500 to 3000 Lb (no doubt, per square inch):
doubtless, this discrepancy must be attributed to the occasional much larger flaw.
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Combining (5-2a) with (5-3), putting ¢, = ¢; and P = P, we obtain as a condition
that a cone fracture develops

P* P* 3 Tu
— : 24 ) =1132
P, (1+864x10 Pc+ ) 37"
N Pc r
or, approximately, P = 0-114 4 0-886 p (5-5)
u

Since P* is itself proportional to r (equation (4-10)) this implies that to a first
approximation, which becomes better as r increases, P, is proportional to 72, in
accordance with a maximum stress criterion for fracture: but when 7 is not much
larger than 7, the increase of P, with r is somewhat slower. This is in excellent quali-
tative agreement with the results of Tillett, though the slope, dlog Pc/dlogr, of the
best straight line through her points in the range 3-5cm < 7 < 11cem is a little too
low, about 1-8 rather than about 1-9 as we should expect. It is also in agreement with
our interpretation that Tillett found that scratching the glass surface with a
diamond (which we should regard as increasing ¢;) had no effect on P, for indenters
of 2-5cm radius or less but lowered P, towards P* for the larger indenters.

(ii) c¥ < ¢t < c*. This is the range of validity of Auerbach’s law. It extends
over two powers of 10 in ¢; (equations (4-11) and (5-3)) and accordingly over three
powers of 10 in 7. According as ¢, is less than or greater than the value, about $4%*,
corresponding to the first minimum of P (figure 4), the crack has or has not a small
unstable growth to the corresponding stable depth ¢, when ¢, becomes equal to c;.
In either case, it then deepens stably with increasing load, still being a shallow ring
crack, to (P*, ¢*) whereupon it extends unstably by a factor of order one hundred
to the new stable value ¢, corresponding to a fully developed cone crack.

We have tended so far to ignore the fact that the area of contact increases with
load. The first stable crack of depth ¢, therefore may not be the one which leads to
the ultimate cone crack. It may be covered up, and thus be encompassed by the
fully compressive region of the stress field before ¢, merges with ¢,. Such a crack
will close up and play no further part in the crack-formation process. However, as
we expect this incomplete crack to be eccentric it should not be fully covered at once.
So long as a substantial part of this crack remains uncovered it should reduce the
magnitude of the surrounding tensile stress field (except near the edges where it
intersects the circle of contact, where the tensile stress tends to reopen it against
compression). This will tend to inhibit the formation of a second crack as a increases.
If the first crack never attains the depth c¢* a second will eventually initiate when the
first becomes sufficiently well covered. There may therefore be one or more pre-
liminary cracks within the final effective one. It is not quite clear what we should
expect when a partially covered stable crack breaks through to form a fully
developed cone fracture. The most strongly stressed portion is that just outside the
circle of contact, and this doubtless makes the breakthrough first, then extending
over the rest of the cone. If only a small part of the initial crack is covered when
breakthrough occurs, the stress concentration at the edge of the remainder should
be sufficient to reopen the covered portion. We should then see a ring crack actually
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intersecting the circle of contact. If, on the other hand, a substantial part of the
initial ring crack is covered when breakthrough occurs, one should expect the crack
to extend from the uncovered portion only, then spread around the cone and grow
back up to the surface. In this case the visible ring crack may lie entirely outside the
circle of contact and may appear split on the side opposite to that at which break-
through occurred.

(iii) ¢; > c¢*. From (4-11) and (5-1) this condition corresponds to

r < r = 0-72(E[k2y)tct (5°6)

so that ri represents a lower radius limit to the validity of Auerbach’s law for a com-
pletely non-plastic material. Inserting the values of k, £ and y used in case (i) and
¢t = 0:9 x 104 cm into (5:6), we have 7, = 38 x 10~%cm. For smaller indenters, from
equations (5-1), (5-2b) and (5-6), with P = P; and ¢; = ¢,, we have

7 P \}[P* 1 (P*\} (P* b1k

F=20 (5 [mat () ()] &
so that, when r < r, Pe( < P*) tends toward proportionality with 72 as in case (i).

One must not place too much reliance on these results since when ¢; approaches

the order of magnitude of a (cf. figure 4) the validity of the theory is distinctly
doubtful. Moreover, as pointed out by Roesler (1956a) the Hertz stress formulae are
untrustworthy at small 7, when, under the critical load, @ is no longer small compared
with r, and furthermore plastic flow may occur even in a nominally brittle solid due
to the very high stress produced under a small indenter (at P* the maximum shear
stress present according to the Hertz formulae is 12-1(yE?/kr)}, which is approxi-
mately 10%°/7¢dyn/cm2, r being in centimetres, with the parameters for glass with
a steel indenter which we have used above). The case ¢t > ¢* may arise more
realistically for a specimen with relatively severe surface damage.

6. DiscussioNn

In this section we take up a few corollary points. We were led into this subject by
experimental observations on ring cracks in diamond (in which crystallographic
cleavage introduces complications which we do not deal with here) and we have not
performed systematic experimental observations on Hertzian fracture of glass.
However, after reaching the conclusions of §3 regarding the crack path we per-
formed some impact experiments, dropping a relatively large steel sphere, of radius
0-875 cm, on to 1in. thick plate glass from a height of ca. 17 cm, which gave approxi-
mately a 50 %, probability of producing a cone fracture, the ball being greased so as
to make the area of contact visible. Figure 5 is selected as a relatively simple
representative result. In many cases there was more complex fracturing, but the
following characteristics, seen without complication in figure 5, plate 2, are quite
general: the crack trace is on one side quite close to the circle of contact (sometimes,
as in this case, just inside it, but not always so), and striations visible on the sub-
surface crack have directions which appear to indicate that it has grown around in
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F1cure 5. Surface view (reflected light) of a ring erack formed by dropping a steel ball, radius
7 = 0-875 cm, onto a glass plate. The grease patch, radius @ = 0-061 em, reveals area
of contact.

(Facing p. 304)
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both directions from this place of greatest proximity to the centre of the contact
area, to meet itself at the opposite point of the ring. It would require more elaborate
experiments than we have conducted to confirm the obliquity of the cone axis which
we anticipate, and think we observe.

Our interpretation requires that at loads less than P,, r being within the range for
which Auerbach’s law is valid, and especially when r is small compared with ry,
shallow ring cracks of depth ¢, should be produced. Since their penetration is less,
by a factor of a hundred or more, than that, ¢, of the cone crack at critical load, we
find no difficulty in supposing that they ordinarily pass unnoticed. However, apart
from the prospect of detecting them with more delicate observation, we think they
may have other observable consequences. In particular, repeated application of the
same load would give opportunities for cumulative change in this crack, by entry
of ‘debris’ (cf. Lawn & Komatsu 1966), or chemical change altering the effective
value of y, either of these causing gradual progress of the crack. This may provide an
explanation of the observations of Hancox (1960) and Cooper (1961), quoted by
Bowden & Tabor (1965), that with impact repeated a few thousand times a ring
crack is produced in diamond at a lower load than is required in a single impact.
Cooper looked for cumulative crack growth, and found instead that the crack
appeared suddenly: but this is not incompatible with our expectation that it would
extend suddenly by a factor of about 100 after growing slowly to the critical depth.

The reported factor 4, by which the maximum stress, om, at fracture, is reduced
(equivalent to a factor 64 in P for a fully elastic indenter) is too large for agreement
with our calculations. However, we suspect that this factor may have been over-
estimated; it has been arrived at by combining the results for repeated impact tests
made with steel balls with those for static tests made with a different (diamond)
indenter, and no such large factor is deducible from the steel ball tests alone.

When the cone crack forms, the area within the ring at which it meets the surface
is elastically depressed. If the ring crack is not much larger than the circle of contact,
and especially if the applied load, or kinetic energy of impact, is more than the
minimum necessary to make a cone crack, the indenter will then bear on the surface
outside the ring. This should produce a secondary ring crack outside the primary
one, but this time not spreading out in a conical skirt, because the former crack
prevents the development of tensile stresses in the direction normal to it. The
secondary crack should therefore join, or nearly join, the primary crack, to make
a detachable collar of material around the neck of the cone.

Finally, we note that the Auerbach constant P*/r, by equation (4-10), is propor-
tional to y and depends on elastic constants in a relatively insensitive way provided
that the indenter is not elastically soft compared with the specimen (cf. equation
(2-3)). Furthermore, it does not depend on the size of pre-existing cracks, or on
anything else. It therefore affords, in principle, an excellent means of measuring the
surface energy . This quantity, of course, may involve plastic work in the neigh-
bourhood of the growing crack, and may be subject to chemical change. In so far as
it is time-dependent, this method of measurement is quite appropriate, since the
approach to the critical condition is in principle reversible, and the loading rate can
be widely varied in a controlled manner. The disadvantages are that the numerical
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constant in equation (4-10) has only been calculated on the basis of approximations,
and must be subject to statistical variation if, as the evidence indicates, the precise
crack path is subject to some statistical variation. Further changes in the numerical
factor must occur in crystalline materials when crystallographic cleavage modifies
the crack path. These disadvantages may be to some extent overcome, either by
experimental ‘ calibration’ of the method, or by more detailed computation. Even
without this, the Auerbach constant appears to be a most valuable experimental
quantity bearing on the strength of materials subject to brittle fracture, primarily
related to ¥, and the extension of the Hertzian fracture test to a wider range of
materials may be advocated.

Note added 10 October 1966

A referee has advised us to give reference to the review paper by G. I. Barenblatt
(1962, Adv. Appl. Mech, 7, 56) in which cracks with ranges of stable and unstable
growth are discussed, with other specific examples than that discussed here, and to
the paper of D. M. Marsh (1964, Proc. Roy. Soc. A 279, 420) whose evidence of plastic
flow in glass is of importance in connexion with the failure of Auerbach’s law at the
lower limit of indenter size.

One of us (B. L.) wishes to thank Industrial Distributors Limited for a Research
Fellowship during the tenure of which this work was done.
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